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The information-theoretic secure one-time pad offers a mathematical guar-
antee of perfect security, with a few drawbacks - you are required to exchange
keys that are at least as long as your message, and you can only use these keys
once. The key exchange is a difficult, imperfect process, which is why the
one-time pad is not commonly used. However, the fact that even with infinite
computing power you cannot deduce anything besides previously held knowl-
edge of the message makes a more secure key-exchange system an interesting
avenue of research.

This is where the theory of quantum key-distribution arose. This is a
cryptographic paradigm that is not only mathematically secure - it is also
impervious to interception by eavesdroppers. It relies heavily on the no-
cloning theorem, which states that ”it is impossible to create an identical
copy of an arbitrary unknown quantum state.”[3] This methodology allows
for a secure key exchange over insecure channels - where even the intercep-
tion of the exchange fundamentally alters the communication itself. This is
predicated upon the validity of the no-cloning theorem, which is outlined in
the theorems and proofs section below.

Imagine Alice and Bob want to communicate with each other, and there
is an eavesdropper Eve that is attempting to intercept their messages. Alice
and Bob only have access to two insecure channels - a traditional one for
bits, and a quantum one for qubits. Awn Umar has an excellent example,
listed below [2]:

Alice has the option of using two different polarization basis—rectilinear
and diagonal—using which she can send either 0 or 1. She ar-
bitrarily decides that a 1 encoded in the rectilinear basis will be
vertically (0◦) polarized, a 1 encoded in the diagonal basis will
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be polarized at 45◦, and so on. She informs Bob of this scheme
through the conventional channel, and now they are ready to
exchange keys. This is summarized in the table :

Table 1: w.l.o.g, arbitrary polarization basis

Basis 0 1

Rectilinear (+) 90◦ 0◦

Diagonal (x) 135◦ 45◦

Alice begins by generating cryptographically-secure random pair-
ings of bits and basis—huge amounts of them. For example,

1 : d iagonal ,
0 : d iagonal ,
0 : r e c t i l i n e a r ,
1 : d iagonal ,

One at a time, she encodes the bits in their associated basis and
sends the resulting polarized photons to Bob through the quan-
tum channel. Now, the way this works is that any party that
wishes to read these incoming qubits cannot tell which basis they
were encoded in—so they just guess. But there’s another catch:
if they measure the qubit in the wrong basis, the reading they
get is purely random, and the qubit is destroyed in either case.

In the scenario above, Eve cannot intercept the communication
without altering it, thus exposing herself. Any attempt to read the
original data results in its destruction, thus preventing man-in-the-middle
attacks or allowing Eve to reconstruct the original qubits.

After Alice has sent all the data, Bob uses the public bit channel to dis-
close his choices of basis for each bit sent. Alice then replies with the original,
true basis and they both discard any bits where Bob guessed incorrectly. Sta-
tistically, Bob will guess correctly around 50% of the time. The verification
that they weren’t eavesdropped is now simple - they select a random subset
of the message and compare it over the bit channel. If it matches, they can
ascertain with a high degree of certainty that Eve did not intercept their
message.
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This is mathematically secure - however, it does not take into account
the possibility of the regular channel being attacked by Eve in a MitM style
attack. This issue is rectified with other common cryptographical tools,
however, such as Wegman-Carter authentication.

I personally thought this topic was fascinating - the fact that a com-
munication channel exists such that any data that is read is permanently
destroyed/lost is unique and not commonly found elsewhere in information
theory. I enjoyed reading about quantum mechanics, and about the oppor-
tunities afforded to us through quantum computing. I do not have a strong
background in physics, so I must accept some of the proofs as fact without
self verification.
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Required Proofs and Equations

Schrodinger’s Equation:

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ

No-Cloning Proof (courtesy of Yoav Pollack)[1]:

|ψ〉 is the original state of particle A and |Blank〉 is some general state of a
particle B which we shall use to copy particle A. The overall state is therefore
|ψ〉 ⊗ |Blank〉. an operation on a particle should be unitary, and we wish it
to copy the original state:

U(|ψ〉 ⊗ |Blank〉) = |ψ〉 ⊗ |ψ〉 (1)

This should of course work for any state, and we therefore choose without
loss of generality another state which is neither the same nor orthogonal to
the original one of particle A.

U(|φ〉 ⊗ |Blank〉) = |φ〉 ⊗ |φ〉 (2)

Taking the inner product of the the two results we arrive at:

(〈Blank|⊗〈φ|)(U †U)(|ψ〉⊗|Blank〉) = (〈φ|⊗〈φ|)(|ψ〉⊗|ψ〉) = (〈φ||ψ〉)2 (3)

on the one hand. On the other hand:

(〈Blank|⊗〈φ|)U †U(|ψ〉⊗|Blank〉) = (〈Blank|⊗〈φ|)(|ψ〉⊗|Blank〉) = 〈φ||ψ〉
(4)

We arrive at a contradiction since we assumed the states are not identical or
orthogonal.
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